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AN ACCUMULATE-TOWARD-THE-MODE APPROACH TO 
CONFIDENCE INTERVALS AND HYPOTHESIS TESTING WITH 

APPLICATIONS TO BINOMIALLY DISTRIBUTED DATA 

1. Introduction. 

Analyses of binomially distributed data usually depend on the normal approximation to 
the binomial or, for small sample sizes, the binomial cumulative distribution function. The first 
approach is only good for an unspecified "sufficiently large" sample size and does not reflect the 
asymmetry of the binomial distribution for probabilities other than 0.5. The second approach 
leads to suboptimal designs. Neither approach extends easily to handle multivariate binomial 
data. 

This paper describes a new accumulate-toward-the-mode approach to hypothesis tests and 
confidence intervals and the application of this approach to binomially distributed data. The usual 
cumulative distribution function, which accumulates probability from left to right, is replaced by 
an accumulate-toward-the-mode distribution function which accumulates probability from areas 
of lower probability to areas of higher probability. This approach, when applied to 
asymmetrically distributed data, leads to more powerful hypothesis tests and more accurate 
interval estimates. In addition, this approach easily extends to analysis of multivariate 
distributions, providing decision makers with better information on the relative performance of 
alternatives. 

Section 2 provides some background on the relationship between hypothesis tests and 
confidence intervals; gives examples with both symmetric and non symmetric distributions; and 
demonstrates how the usual procedures, when applied to non symmetric distributions, lead to 
suboptimal designs. 

Section 3 introduces an alternative to the usual cumulative distribution function (CDF) for 
use in hypothesis testing and finding confidence intervals. For reasons that will become apparent, 
this new function is called the accumulate-toward-the-mode distribution function (AMDF). Its 
application to hypothesis testing and finding confidence intervals leads to optimal designs for 
both symmetric and non symmetric distributions. 

In Section 4, the AMDF is developed for both the binomial and the bivariate binomial 
distributions. Section 5 contains examples of hypothesis tests and confidence intervals. This 
section also provides a comparison between confidence intervals based on the AMDF, and those 
typically obtained using the normal approximation. Section 6 gives some observations and 
conclusions. 



2. Hypothesis tests and confidence intervals. 

Statistics texts do not always point out the relationship between hypothesis testing and 
confidence intervals. This is unfortunate, since understanding this relationship can lead to better 
understanding of both. Supposed is a random sample and/? is a parameter to be estimated from 
X. Consider a collection of hypothesis tests, all with significance level a, and all with a null 
hypothesis of the form p = p0, where p0 may be any of the possible values of the parameter/?. 

The set of p0 values for which the null hypothesis cannot be rejected is a 100-(l-a)% 

confidence interval for p. 

There is some flexibility in the choice of rejection region for these hypothesis tests. This 
choice can affect the power of the tests and the size of the confidence interval. Under the null 
hypothesis (i.e., if the null hypothesis is true), the probability that the test statistic, T, will be in 
the rejection region must be a. That is the meaning of significance level. However there can be 
many sets with that probability; hence the flexibility in choice of rejection region. Ideally, one 
would like a rejection which meets the following conditions. Under the null hypothesis, the 
probability density of 7Ts relatively low in the rejection region and relatively high in the 
acceptance region (i.e., outside the rejection region). Conversely, if the null hypothesis is not 
true, we would prefer the opposite conditions. That is, the probability density of T should be 
relatively high in the rejection region and relatively low in the acceptance region. 



3. Choosing a rejection region. 

3.1       Symmetric distributions.   Figure 1 illustrates the choice of rejection region that best 
meets the above criteria when the distribution is symmetric. The curve in the upper subplot is a 
probability density function (PDF), representing the PDF of the test statistic under the true 
hypothesis. The curve in the lower subplot is the corresponding CDF. Any horizontal line, such 
as those in the upper subplot, could be used to define the rejection region: namely the area where 
the curve lies at or below the horizontal line. This choice automatically meets the criteria that the 
PDF of T be relatively low in the rejection region and relatively high in the acceptance region. 

Figure 1. Rejection region for a symmetric distribution. 

How well this choice meets the design criteria for the case where the null hypothesis is not 
true is more difficult to assess, since, in that case, the true distribution is unknown. That issue is 
generally addressed by increasing the sample size. That is a topic will not be dealt with in this 
paper. 

At this point, the problem is how to select the line that will make the probability of 
rejection equal to a. That is where the CDF comes in. 

The rejection region we have defined has two tails. Because of the symmetry of the 

distribution, we know that the probabilities of these two tails are both equal to °y~ .   So, 

horizontal lines in the lower subplot at the levels a/~ and l-<%, meet the CDF curve at the two 

cutoff points for the rejection region. The blue, green, and red lines in the figure correspond to 
significance levels of 0.05, 0.1, and 0.2 respectively. 

Although the PDF function was used to illustrate the choice of rejection region, it was not 
needed to determine the threshold values. Only the CDF was required. This is why most 
statistical tables give values of the CDF but not the PDF. 

3.2       Non symmetric distributions. The most commonly used approach for finding the 
rejection region when the distribution of Tis non symmetric is to use the procedure just described 
for symmetric distributions. This is easily done with existing tables of the CDF function. 



However, when the distribution is not symmetric, this approach fails to meet our criteria for 
selection of the rejection region. The upper subplot of Figure 2 gives examples of rejection 
regions selected in this way. As above, rejections regions for significance levels of 0.05, 0.1, and 
0.2 are shown. In each case, there are densities in the acceptance region that are lower than 
densities in the rejection region. 

0.5  - 

Figure 2. Rejection regions for a non symmetric distribution. 

The two lower subplots illustrate an iterative approach to defining a rejection region that 
meets the design criteria. The initial step is obtained by applying the usual procedure as discussed 
above (blue lines). Looking at the density function shows the density higher at the left cutoff than 
at the right, indicating a need to shift both cutoffs to the left. This is done by decreasing the 
probability in the left tail and increasing the probability in the right tale by the same amount 
(green lines). This procedure is repeated until the densities at the two cutoffs agree to the desired 
level of accuracy. 

Table 1. Iterative Procedure for choosing the rejection region. 

Color Left Boundary Right Boundary 

Prob. in tail Density Prob. in tail Density 

Blue 0.1 0.1281 0.1 0.0574 

Green 0.05 0.0875 0.15 0.0811 

Red 0.025 0.0571 0.175 0.0921 

Cyan 0.0375 0.0736 0.1625 0.0867 

Magenta 0.04375 0.0808 0.15625 0.0839 



Table 1 shows the probabilities in the tails, the densities at the cutoffs and the colors used 
in the plot. Although this method does produce a rejection region meeting the desired criteria, it is 
labor intensive and requires the access to both the CDF and PDF functions. 

3.3 The accumulate-toward-the-mode approach. Figure 3 illustrates how information 
from both the cumulative distribution function and the probability density function is used to 
define the accumulate-toward-the-mode distribution function (AMDF). 

As in section 3.1, the rejection region is defined as the set of points where the PDF lies on 
or below a horizontal line as shown in the center subplot. This region consists of two tails, shown 
in yellow. The vertical lines indicate the boundaries of the left and right tails. The area of the left 
tail is the value of the CDF (upper subplot) at the left boundary point. The area of the right tail is 
one minus the value of the CDF at the right boundary point. The sum of these two areas is the 
significance level for this rejection region. This sum is also used to define the value of the AMDF 
(bottom subplot) at both the left and the right boundary points. As the horizontal line sweeps 
upward from zero to one, the area of both tails increases and their boundaries move closer 
together until the line reaches the peak of the PDF at its mode. Thus, the AMDF(x) increases as x 
moves toward the mode and reaches its peak value of one when x is equal to the mode. 

0 5 

Figure 3. The accumulate-toward-the-mode distribution function. 

The AMDF can be used to find a rejection region for significance level a by looking at a 
horizontal line at the height a in the lower subplot. The rejection region is the set of points where 
the AMDF lies at or below that line. The boundary points of the rejection region are the points 
where the AMDF crosses the line. Because of the way the AMDF was constructed, the probability 
density in the rejection region will always be less than that in the acceptance region, as desired. 



4. Binomial distributions. 

If a random variable Y is distributed hm{n,p), then 7 is the number of times an event, E, 
occurred in n independent trials and pis the probability of occurrence of E in each trial. The 

mean and standard deviation of Y are p = n • p and a = Jn- p-{\- p) . 

By the Central Limit Theorem, we know that, for sufficiently large n, 7 is distributed 

approximately N n- p,Jn- p-{\- p)\. In practice, this is usually restated in terms of Y/n, a 

point estimator for;?, which is distributed approximately NI p, ^Jp • (l - p)/n J. 

4.1       Confidence intervals.   There are two commonly used approaches for finding confidence 
intervals when working with binomially distributed data: using the normal approximation and 
using a table of the binomial distribution (i.e. the CDF). We will discuss each of these briefly, 
before looking at the development and application of a third approach, using the AMDF for 
binomial data. 

Regardless of what method is used, one will not, in general, obtain a confidence interval 
with exactly the intended confidence level. This is a consequence of the fact that the binomial 
distribution is discrete. 

4.1.1 The normal approximation. Probably the most common approach to generating 
confidence intervals for pis to use the normal approximation. To be more precise, the procedure 
generally used is to estimate the mean and standard deviation (gander) from the data and then 
use a procedure designed for normally distributed data with unknown mean but known standard 
deviation. A slight variation is to use a procedure designed for normally distributed data where 
both the mean and the standard deviation are unknown, but the standard deviation is assumed to 
be fixed (i.e., although the mean may change in response to some "treatment", the standard 
deviation will not). 

The Central Limit Theorem is the justification for using the normal distribution in this 
way. This theorem is only valid when the sample size is "sufficiently large", but gives no 
guidance for determining how large that might be. In practice, the necessary sample size depends 
on the true (but unknown) value of p, as well as the required accuracy. 

Except for the case p = 0.5, the binomial distribution is not symmetric. This can affect 
both the rejection region and the confidence interval. The normal distribution will never show 
this non symmetry, regardless of sample size. The fact that, for the binomial distribution, a 
varies with palso contributes to the asymmetry of binomial confidence intervals. The methods 
described above do not reflect this source of asymmetry either. There is a way to modify these 
methods to at least partially account for this factor, but it is seldom if ever used. 

There is a rule-of-thumb that is sometimes used to decide if the sample size is big enough. 
This rule states that the value of p should be at least three standard deviations away from both 
zero and one. Since the value of pis unknown, this rule cannot be used to determine the sample 
size before the data are collected. However it can be used after the fact to indicate when the 
sample was too small for the estimated value of p. The sample size determined by this rule-of- 
thumb will be quite large for p near zero or one. As a result, one may be led to use a large sample 



size in order to justify the methodology even though a smaller sample size would provide the 
desired accuracy. 

4.1.2 Using the binomial CDF. The binomial CDF can be used to find rejection regions 
and confidence intervals using the same basic procedure described in section 3.1. Some 
adjustment must be made because of the discrete nature of the binomial distribution. The exact 
significance or confidence level may not be achievable. It can only be approximated. Similarly, 
the probabilities in the two tails will not, in general, be equal, only approximately so. Most tables 
cover only a limited range of sample sizes, typically up to 20. This procedure can easily be 
automated, which effectively eliminates the sample size restriction. 

4.1.3 The binomial AMDF. Developing and working with the AMDF is a little different 
for a discrete distribution. The AMDF will only have nonzero values at the discrete set of points 
for which the PDF is nonzero. For the binomial distribution, this is the set of possible binomial 
outcomes. 

0.5 
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Figure 4. The binomial AMDF. 

Figure 4 contains three subplots: the CDF at the top, the PDF in the center, and the 
AMDF. To determine the value of the AMDF for one of the possible binomial outcomes, draw a 
horizontal line through the value of the PDF at that point. The blue dashed line in the center 
subplot of Figure 4 is an example. The heights of the vertical lines in this subplot represent the 
values of the PDF function for all possible binomial outcomes. (Notice that the vertical scale in 
the center subplot does not match that of the other two subplots.) The sum of the values that fall 
at or below the dashed line (i.e., the vertical lines shown in blue) is the value of the AMDF at the 
point in question. This sum is the height of the vertical blue line in the lower subplot. To find a 
rejection region, draw a horizontal line at the height corresponding to the desired significance 
level. The magenta line in the lower subplot of Figure 4 is an example. All the possible outcomes 
for which the value of the AMDF falls on or below this line are in the rejection region. In the 
figure, these are also shown in magenta. When, as in this example, none of the AMDF values is 



equal to the desired significance level, the intended significance level cannot be achieved exactly. 
The true significance level is somewhat smaller. 

The binomial distribution shown in Figure 4 is a specific example with a specific sample 
size (25) and probability (0.3). For any fixed sample size, there is a family of PDF functions, one 
for each probability in the interval [0,1]. Recall that to determine a confidence interval for/?, one 
must consider hypothesis tests for all of possible values of/?. To do so with the accumulate- 
to ward-the-mode approach, one will need the AMDF for each/?in the interval [0,1]. Figure 5 
depicts this family of AMDF functions for a binomial distribution with a sample size of 10. 

g       m Probability 

Binomial Result 

Figure 5. Family of binomial AMDF functions for a sample size of 10. 

In this figure, the Binomial Result axis represents the possible outcomes, namely the 
discrete set of integers ranging from 0 to 10. The Probability axis represents the possible values 
of the probability of occurrence of the binomial event, all values in [0,1]. That is why the figure 
consists of a discrete set of curves, one for each binomial result. Each of these curves spans the 
full range, from 0 to 1, in probability. The individual curves are shown in different colors so they 
can be more easily distinguished. The height of one of these curves at any particular point 
indicates the value of the AMDF function for that point (i.e., binomial result and probability). 

The plot of the AMDF function for a particular probability, similar to that in the lower 
subplot of Figure 4, is included in Figure 5. In this case, the binomial probability associated with 
the curve is 0.5. The sample size is, of course, 10. The values of this AMDF function are shown 
by vertical dashed lines with a circle at each end. As expected, these values are small for 
binomial results near the extremes (0 and 10) and reach a peak value of one at the binomial result 
of 5. Smaller values of the binomial probability lead to increasing values of the AMDF to the left 
side of the figure (smaller binomial results) and to decreasing values to the right side of the figure 
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(larger binomial results). Larger values of the binomial probability, of course, have the opposite 
effect. This is most easily seen for the most extreme cases (binomial results of 0 and 10). 

For a single binomial result, the value of the AMDF function varies as the probability 
ranges from 0 to 1.0, tracing out the curve show for that particular outcome. In each case, this 
value reaches its maximum value of 1.0 in an interval containing the binomial probability, pfov 

which the binomial result equals the product of the sample size (10 in this case) and p. 

The AMDF function can be used to find a rejection region for a hypothesis test or to find 
a confidence interval. These two tasks can be accomplished by focusing on vertical cross sections 
of the AMDF function, as depicted in Figure 5. Consider, for example, a hypothesis test with 
p = 0.5 as the null hypothesis. We have already seen that the intersection of the AMDF in Figure 

5 with the plane, Probability = 0.5, is the binomial AMDF function for sample size 10 and 
probability 0.5. As in the discussion of Figure 4, the rejection region for a hypothesis test of this 
kind is the set of points (Binomial Results) for which the value of the AMDF is at or below the 
intended significance level. 

To find a confidence interval, we focus on a different vertical cross section. For example, 
if the observed binomial outcome is 7, we would look at a the intersection with the plane, 
Binomial Result = 7 . Values of the AMDF function in this plane are shown in blue in Figure 5. 
The confidence interval consists of all probabilities for which the this curve lies above 

(l-C/100), where C is the intended confidence level (expressed as a percentage). 

4.2       Confidence regions for multivariate distributions. 

In section 2, we discussed the close relationship between hypothesis tests for the value of 
a parameter and confidence intervals for the value of that parameter. These ideas easily extend to 
the multivariate case. Consider a vector parameter instead of a scalar for the hypothesis test and a 
region of a multidimensional space which can be expected, with the prescribed level of 
confidence, to contain the true value of that vector parameter. Section 4.2.1 illustrates this 
approach for a bivariate binomial distribution when the two components are independent. The 
extension to higher dimensions is straightforward. If the assumption of independence is removed, 
computation of the multidimensional PDF is more complicated, but if that can be accomplished, 
the same procedure will work. Of course, visualization of the AMDF function becomes more 
difficult. Even for the bivariate case, the analogs of Figures 4 and 5 would require 3 and 5 
dimensions respectively. 

The idea of confidence regions for multivariate distributions is not new. For multivariate 
normal distributions, confidence ellipsoids, based on Hotelling's T2 test, can be generated. This is 
a generalization of the one dimensional procedure for the normal distribution that was discussed 
earlier. One could certainly apply it to the multivariate binomial case in much the same way the 
normal approximation is often used for the binomial distribution. This procedure would have 
shortcomings similar to those pointed out for the univariate case. 

There is a multivariate extension of the CDF function, but it is not useful for the 
generation of confidence regions. Applying the AMDF approach to the multivariate binomial 
distribution allows one to generate confidence regions based on the true distribution. Regardless 
of what method is used, one will not, in general, obtain a confidence region with exactly the 
intended confidence level. This is a consequence of the fact that the binomial distribution is 
discrete. 



4.2.1 The AMDF for a bivariate binomial distribution. Computing and using the 
AMDF for the bivariate binomial involves basically the same process that was used above for the 
binomial distribution. Figure 6 contains two subplots. The upper subplot shows the PDF of a 
bivariate binomial distribution, (x, y), with x and y distributed independently. The lower subplot 
shows the corresponding AMDF. Sample sizes and probabilities for x and y are as shown. The x 
and y axes, representing the possible outcomes, have been normalized by dividing by the sample 
size. Thus, the possible values in the x direction range from zero to one in increments of 0.2. In 
the y direction, they range from zero to one in increments of 0.1. The color coding in the two 
plots is intended to aid visualization of two processes, calculating the AMDF and using the 
AMDF to define a rejection region. The focus for this discussion is the outcome (x, y) = (1, 4), 

corresponding to the point p0 = (0.2,0.4) in each subplot. In the upper plot, the probability of 
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rT"*«4^j r.aU.-w" *:»?»**--—-•"•*•--•. ,—- 

Y/ny 

Figure 6. An example of the bivariate binomial AMDF. 

occurrence of each possible outcome is indicated by a vertical line with a solid dot at each end. 
(i.e., The length of each vertical line is the probability of occurrence for that outcome, so the 
upper dot is at that height.) Where probability of a given outcome is less than or equal to the 
probability of occurrence of p0, the vertical lines are colored magenta. The blue lines correspond 

to points whose probability is greater than that of p0. The magenta x's are plotted at a height 

corresponding to the probability of p0 above each possible outcome. 

The value of the AMDF atp0 is the sum of the probabilities of all the outcomes whose 

probability is less than or equal to the probability of occurrence of p0 (i.e., the sum of the lengths 

of all the magenta vertical lines in the upper subplot).    This is the length of the vertical line at p0 

in the lower plot. (Notice the difference in the vertical scales in the two subplots.) A similar 
calculation for each possible outcome (i.e., for each possible combination of x and y) leads to the 
AMDF function as shown in the lower plot. In this plot also, the magenta x's indicate the height 
of the function at pQ and the vertical lines that do not reach above that level are shown in magenta. 

These points make up a rejection region for a hypothesis test with null hypothesis: px = 0.37 and 

p  - 0.63 ; and significance level, «, equal to the value of the AMDF function at p0. The 

10 



vertical blue lines correspond to possible outcomes in the acceptance region. These are the 

possible outcomes for which the point (0.37, 0.63) would be in a 100 • (1 - a) confidence region. 
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Figure 7. Confidence regions for bivariate binomial distributions. 

Figure 7 illustrates how confidence regions are obtained from the AMDF. The upper 
subplots show the AMDF, for two possible outcomes from a bivariate binomial distribution.   The 
outcomes and sample sizes for x and y are as shown. In either of these subplots, a confidence 

region for a given confidence level, C, would be the set of points, (px,py), where the value of the 

AMDF is greater than(l-C/100). The boundaries of several such confidence intervals are shown 

in the lower subplots. The '+' in these subplots shows the point estimate for \px,py). The 

confidence regions all contain the point estimate, but they are not all symmetric. In fact, the 
lower right subplot shows the only case for which the binomial confidence intervals are 

symmetric, namely when the point estimate for (px,py) is (0.5, 0.5).   In both subplots, the 

confidence regions are elongated. This is due to the difference in sample sizes. The estimate of 
px is less precise because the sample size is smaller. 
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5.        An Application. 

In a recent study the Army Materiel Systems Analysis Activity (AMSAA) examined the 
level of protection provided by two different helmet designs. The Integrated Casualty Estimation 
Model (ICEM) was used to evaluate the effectiveness of each helmet. This resulted in two 
binomially distributed statistics. For reasons that will be explained below, these data were 
subjected to two separate analyses. Only one of these was, in the end, actually used for the study. 
However, both are discussed here, because they demonstrate two different applications of 
accumulate-toward-the-mode methods with binomially distributed data. 

5.1       The original question. The original question regarding analysis of the helmet study data 
was, 'Given two binomially distributed statistics, X and Y, both from a sample size of 500, how 
far apart do X and Y have to be to show a statistically significant difference?' 

To address this question, we consider a hypothesis test with null hypothesis, px = p • 

One way to conduct this test would be to generate a confidence region for (px,py), based on the 

observed outcome (X,Y). If the line px = p does not intersect this region, then the null 

hypothesis is rejected. 

Generating a set of AMDF tables for problems of this kind would require a significant 
effort. Furthermore, searching through such a set of tables to determine the boundary of a 
confidence region would be tedious and time consuming at best. Fortunately, this is not 
necessary. It is not difficult to develop an automated procedure to compute the value of the 

AMDF for a given bivariate binomial outcome, (X,Y), and a hypothesized pair,(px, py), of 

probabilities. 

A single execution of this procedure would be needed to test the hypothesis that the 

probability pair, (px,py), is the pair of probabilities associated with the bivariate binomial 

distribution that produced the binomial outcome, (X,Y). Multiple executions could be used to 
find a confidence region, or to test a compound hypothesis test such as px = p . This would 

answer the question of whether, for a specific outcome (X,Y), X and Y are statistically different. 
Another layer of repetition, spanning the possible bivariate binomial outcomes, could address the 
broader question above, "How far apart do X and Y have to be to be significantly different?" 
This would be computationally intensive, but certainly doable. A couple of observations lead to a 
quicker answer to this broader question. 

It is not necessary to find the entire confidence region: just its intersection, if any, with the 

linep^ = py. Since a confidence region with confidence levelCis the set of points, [px,py), for 

which AMDF(X,Y) exceeds (l-C/100), it is sufficient to look at the maximum of AMDF(X,Y) 

on the line. 

It is not difficult to show that the probability, pm , that maximizes the PDF(X,Y) along the 

line px = p is the average of the point estimates for px and p . (i.e., pm = (X + Y)/l000 in our 

current example.   Considering the way the AMDF is related to the PDF, one might expect that 

the maximum of the AMDF on the line px = p would also fall at or near the point (pm,pm). 

Figure 8 was generated with the assumption that this expectation is met. The AMDF values 
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shown in the figure are the values for the point (pm,pm). The actual value of the AMDF could 

be greater than this, but not smaller. 

Each curve in this figure represents the maximum values of the AMDF on the line 
px = p for (X,Y) pairs with a given absolute difference. The difference corresponding to each 

curve is indicated in the legend. 

Where the curve falls above the horizontal dashed line at the 0.05 level, the null 
hypothesis, px = p , cannot be rejected for a 0.05 significance level. Where the curve falls at or 

below that line, the hypothesis can be rejected for that significance level. From Figure 8, we can 
conclude that the ability to distinguish between binomial populations depends not only on the 
sample size and separation, but on where within the possible range of values X and Y fall. For 
our example, the difference would have to be around 40 or greater to guarantee statistical 
significance, at the 0.05 level, across the full range of possible outcomes. 

200 2S0 
(X+Y)/2 

Figure 8.  Maximum values of AMDF(X,Y) on the tine px = p  for various absolute differences ( X-Y ). 

More detailed calculations at a number of points on several of the curves in Figure 8 
showed that the maximum of the AMDF on the line px = py does occur at a probability of pm (or 

at least within 0.01 of that value). This may be due to the fact that the sample sizes are equal. 
Other cases have yet to be investigated. 

5.2       The amended question. The analysis discussed in the previous section is a good example 
of the AMDF approach applied to a bivariate binomial distribution. However, it was not the 
appropriate analysis for the helmet study. This study was one half of a tradeoff evaluation. One 
of the helmet designs was obtained from the other by removing a small area around each ear to 
improve hearing, and therefore situation awareness. The object of the helmet study was to 
determine the cost, in terms of increased vulnerability, of this change. Thus, it was necessary to 
determine, from a vulnerability standpoint, if the two designs were different and, if so, to quantify 
the difference. However, the analysis of the previous section was based on the wrong statistic. 
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The binomial statistics, X and Y, were generated by a Monte Carlo simulation. In each 
replication of the simulation, a model helmet was tested against a random representation of the 
threat. However, as a variance reduction technique a single set of 500 threat representations 
(fragmentation patterns) was generated and each of these was used for two simulation runs, once 
against each of the helmet designs, (i.e., once for X and once for Y) Clearly, X and Y are not 
independent, as assumed in the previous section. Correct analysis of this data must account for 
the pairing of the two data sets. Typically, this is done by looking at the differences between the 
paired data. In this case, that leads to the definition of a new statistic, Z = Y - X. We would not 
usually expect Z to be binomially distributed. However, since one design was obtained from the 
other by removing a small area on either side, it is possible to get a worse injury with the new 
design, but not the other way around. A pair of Monte Carlo replications with a given threat 
representation could have only three results: no injury in either case, an injury for the new design 
only (represented by the Y statistic), or an injury for both designs. Thus, Z is binomial with a 
sample size of 500. Given an outcome for Z, we can use the AMDF to find a confidence interval 
for pz, the difference between py and px. If zero is not in that interval, not only can we conclude 
that the two distributions are different, but we have an interval estimate for the difference between 
their underlying probabilities. 

0.01 0.02 0.03 0.04 0.05 0 06 0.07 0 08 0.09 

Figure 9. AMDF(Z) for various outcomes. 

Figure 9 shows the AMDF function for several possible outcomes ranging from 0 to 25. 
For each of these outcomes, the corresponding 95% confidence interval is the region where the 
curve for that outcome lies above the horizontal dotted line at the 0.05 level. Except for the case 
when the outcome is 0, these confidence intervals do not include zero. Plots for outcomes 
between zero and five are not shown here, but those curves are much like the one for an outcome 
of five compressed toward the left side of the figure. Therefore, for all non-zero outcomes, the 
hypothesis, px = p , can be rejected.   In addition, a confidence interval for the difference 
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between the two probabilities is obtained. This is a much stronger result than was produced by 
the original analysis. In this case, rejection of the null hypothesis does not depend on the sizes of 
or the absolute difference between X and Y, only on the fact that they are different. 

5.3       Comparing methods.   Figure 10, shows confidence intervals for a few of the possible 
outcomes in the helmet study. The outcomes actually observed in the study were in the range of 
outcomes shown in this figure. The confidence intervals in red were obtained by use of the 
normal approximation. Those in blue were generated using the AMDF. In the figure, the 'x', and 
'+' indicate the lower and upper limits of the confidence interval, while the open circle indicates 
the point estimate. 

0005      001      0015      002      0025      003      0.035      0.04      0.045      005 

Probability 

Figure 10. Comparison of Binomial and Normal 95% confidence intervals for the helmet 
study. 

Two points that were mentioned earlier are visible here. The confidence intervals 
generated by the normal approximation are symmetric about the point estimate, and negative 
values are included in the confidence intervals for a few of the smaller outcomes. The second 
point leads to an incorrect result for those few outcomes: since zero lies in the confidence interval, 
the null hypothesis cannot be rejected. For these cases, the interpretation of the helmet study 
results would be reversed. A third point, not mentioned before is that the "normal" confidence 
interval collapses to a single point when zero is the binomial outcome. 

When working with discrete distributions, one cannot, in general, get precisely the 
confidence level (or, for hypothesis tests, significance level) intended. This is reflected in the 
vertical jumps of the AMDF function. (See Figure 9) If the horizontal line in the figure crosses 
the AMDF curve at a vertical jump, then the intended confidence level cannot be achieved. 
However, when the AMDF, is used as described above, the true confidence level will always be 
greater than or equal to the intended level. When the normal approximation is used, there may be 
additional deviation from the intended confidence level related to the accuracy of the 
approximation and the symmetry of the distribution. 
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Figure 11. Actual confidence levels. 

Figure 11 shows the confidence level achieved when applying the normal approximation 
and AMDF to the helmet study results. Recall that the sample size was 500 and the intended 
confidence level was 95%. The actual confidence level is a function of the true binomial 
probability (i.e. the actual probability that the binomial event will occur in any given trial). For 
each possible probability of occurrence, p, the red line shows the confidence (i.e., 100 times the 
probability) that the interval generated using the normal approximation will, in fact, contain/?. 
Similarly, the blue line shows the actual confidence when the AMDF is used. With this large 
sample size, the confidence levels in the center of the figure, though somewhat noisy, are fairly 
close to the intended level of 95%. Near the sides of the figure, the blue curve trends up, towards 
100%, while the red trends down toward 0% before jumping to 100% for actual probabilities of 0 
and 1. 

Similar curves for a sample size of 50 are shown in Figure 12. Once again, the intended 
confidence level is 95%. In this figure, more detail is visible, but the trends are basically the 
same, although the variability is greater and extends further into the center of the figure. With the 
AMDF, the actual confidence level is always at or above the design level. When the normal 
approximation is used, the actual confidence level is consistently low, dramatically so for 
probabilities near (but not equal to) zero and one. The actual confidence levels continue to 
degrade as the sample size decreases. 

^p^WKKVT'• 

. 
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Figure 12. Actual confidence levels. 
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6. Observations and Conclusions. 

An analyst, working with binomially distributed data cannot go to a table of AMDF values 
to find the rejection region for a hypothesis test or to obtain an interval estimate of a binomial 
probability. Such tables do not exist. However, it is relatively easy to develop software to 
provide the needed information. Once this software is available, it is easier and quicker to do the 
analysis than it would be with a table. Appendix A contains a listing of a MATLAB® routine for 
this purpose. Software such as this makes the AMDF a useful alternative to either the binomial 
CDF or the normal approximation for analysis of binomial data. There are a number of reasons 
why the AMDF approach is preferable. Use of the AMDF, as described above, will give the 
smallest confidence interval with at least the desired level of confidence. This is true regardless 
of sample size: there is no need to use a larger sample size to justify the analysis method. Sample 
size can be chosen on the basis of required accuracy, and the AMDF can be used, before the 
experiment, to make that determination. Finally, the AMDF also works well for multivariate 
binomial data. 

The helmet study provided an opportunity to demonstrate the use of the AMDF approach. 
Several other useful lessons were also learned. It is important to understand the problem and fit 
the analysis to that problem. Use variance reduction techniques when they are applicable. If the 
analysis and the data collection are planned in advance, that planning can include a preliminary 
analysis to determine the sample size. 
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The MATLAB® code below computes a confidence interval based on the AMDF for 
binomially distributed data. The first routine, BinCI determines the confidence interval for the 
given sample size, confidence level, and binomial result. The forth input, probabilityStep allows 
the user to trade of accuracy vs. computation time. The probabilityStep should be small to 
ensure accuracy; 0.001 is probably adequate for most applications, although 0.0001 was needed 
for some of the plots in this paper in order to show the detailed structure of the AMDF. 

The second routine, binocv, returns the value of the AMDF function for a range of 
possible binomial probabilities. It makes use of a third function, binopdf, which returns values of 
the binomial probability density function. A listing of binopdf is not provided because it is a 
MATLAB® function included in the Statistics Toolbox.    Implementation in other languages is 
not difficult, although it may require an implementation of the binomial probability density 
function. 

function [ ci ] = BinCI( outcome, sampleSize, confLevel, probabilityStep ) 
%BINCI returns an AMDF confidence interval for the actual probability 
% of success of a binomial distribution 
% input data 
% sampleSize = N, the number of independent trials 
% outcome = n, the test result (i.e., number of successes that occurred 
% in N trials) 
% confLevel, the objective confidence level 
% probabilityStep, the probability step size 
% Note: determines the accuracy to which the endpoints of the 
% confidence interval are determined 
% 
% intermediate values 
% a - significance level for the family of hypothesis tests 
% p - vector of hypothesized probability-of-event values for one trial 
% 
% output data 
% ci - returned value, containing 
% n 
% N 
% lower bound of the confidence interval 
% point estimate for the actual probability of success 
% upper bound of the confidence interval 
% objective confidence level 
% actual confidence level (for this outcome and sample size) 

N = sampleSize; 
n = outcome; 
coLev = confLevel; 
step = probabilityStep; 

a = 1 - (coLev / 100.0); 
p = (0:step:l)'; 
ci = zeros(1,7); 

x = binocv(n, N, p); 
L = x > a ; 
y = [p(L) x(L)]; 
lc = y(l,l); 
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uc  =   y(end,1); 
m =  n/N; 
tcl   =   100*(1.0   -  max(x(~L))); 
ci   =   [n  N   lc  m  uc   coLev  tcl   ]; 
if(isdeployed) 

fprintf (1, ,%10d%10d%10.3f%10.3f%10.3f%10d%10.3f\n\   n,   N,   lc,   m,   uc, 
coLev,   tcl); 
end 
end 

function   [   cv   ]   =  binocv(n,   N,   p   ) 
%BINOCV  Compute   the   critical   value,   based  on   the  AMDF,    for   a  particular 
%   outcome   as   a   function   of  p 
% data 
% N   -   number   of   independent   trials 
% n   -   test   result   (i.e.,   number  of   successes   that   occurred   in  N 
% trials) 
% p   -   vector   of   hypothesized probability-of-event   values   for   one 
% trial 
% output 
% cv  -   a  vector  of  critical  values,   one   for  each  probability  in p 

lp =  length(p); 
cv  =   0.0   .*   p; 
for   i     =   l:lp; 

mat   =  binopdf( (0:N),   N,   p(i) ) ; 
lv  =  mat   <=  mat(n+l); 
cv(i)   =   sum(mat(lv)); 

end 

binopdf(x,   N,   p)    is   the  binomial  probability  density  function. 
The   inputs   are   the   binomial   outcome,   x,   the   sample   size,   N,   and 
the   probability-of-event   in   each   trial. 
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